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The National Academy of Sciences convened an Arthur M.
Sackler Colloquium on ‘‘Self-organized complexity in the phys-

ical, biological, and social sciences’’ at the NAS Beckman Center,
Irvine, CA, on March 23–24, 2001. The organizers were D.L.T.
(Cornell), J.B.R. (Colorado), and Hans Frauenfelder (Los Alamos
National Laboratory, Los Alamos, NM). The organizers had no
difficulty in finding many examples of complexity in subjects
ranging from fluid turbulence to social networks. However, an
acceptable definition for self-organizing complexity is much more
elusive. Symptoms of systems that exhibit self-organizing complex-
ity include fractal statistics and chaotic behavior. Some examples of
such systems are completely deterministic (i.e., fluid turbulence),
whereas others have a large stochastic component (i.e., exchange
rates). The governing equations (if they exist) are generally non-
linear and may also have a stochastic driver. Many of the concepts
that have evolved in statistical physics are applicable (i.e., renor-
malization group theory and self-organized criticality). As a brief
introduction, we consider a few of the symptoms that are associated
with self-organizing complexity.

Frequency-Size Statistics
The classic example of self-organizing complexity is the frequency-
size distribution of earthquakes. Earthquakes are certainly complex
yet they universally satisfy the relation (to a good approximation)

N � A�D/2, [1]

where N is the number of earthquakes in a specified time interval
and region with their rupture area greater than A. This is the well
known Guttenberg–Richter relation (1). The scaling exponent D
is the fractal dimension introduced by B. Mandelbrot (2). In his
book, Mandelbrot (3) pointed out the wide range of validity of
the fractal scaling relation

Ni � ri
�D [2]

where Ni is the number of objects of size ri. Power-law scaling is
second only to the Gaussian distribution in terms of applicability.
Its relatively recent acceptance, in terms of the fractal paradigm,
can be attributed to the fact that it cannot be used as a
continuous probability distribution function without a cutoff.
The integral of Eq. 2 diverges to infinity either at r � 0 (for D �
1) or as r 3 � (D � 1).

Another example of the applicability of power-law frequency-
size scaling is in fragmentation. Certainly not all frequency-mass
distributions of fragments are power law, but many are (4). An
example is the frequency-mass distribution of asteroids and
meteorites. One consequence is that number-area distribution of
planetary craters satisfies Eq. 1 in many cases.

There are so many examples of the applicability of power-law
scaling in biology that the term ‘‘allometry’’ was introduced to
describe them. The classic example of allometric scaling in
biology is the power-law scaling of a species’ metabolic rate with
the species’ mass (5). It is applicable from ants to elephants.

A complex phenomenon is said to exhibit self-organizing
complexity only if it has some form of power-law (fractal)
scaling. It should be emphasized, however, that the power-law
scaling may be applicable only over a limited range of scales.

Networks
Another classic example of self-organizing complexity is drain-
age networks. These networks are characterized by the concept
of stream order. The smallest streams are first-order streams—
two first-order streams merge to form a second-order stream,
two second-order streams merge to form a third-order stream,
and so forth. Drainage networks satisfy the fractal relation Eq.
2 with Ni the number of ith-order streams and ri the mean length
of these streams (6). This fractal scaling was recognized and
generally accepted some 20 years before Mandelbrot’s introduc-
tion of the fractal concept.

There are many branching networks in biology that exhibit
fractal scaling to a good approximation (7). Actual trees and
plants, root systems, the vein structure of leaves, cardiovascular
systems, and bronchial systems are examples. The concept of
branch order for both actual trees and drainage networks can be
traced back to Leonardo da Vinci.

Time Series
Many time series are examples of self-organizing complexity.
Examples include:

1. A velocity component at a point in a turbulent flow.
2. Global mean temperatures.
3. River flows.
4. Economic time series such as a stock market index or an

exchange rate.
5. Intervals between heartbeats.

Time series are characterized by the probability distribution
function of the values (usually a Gaussian) and correlations
between adjacent values. A time series in which adjacent values
are positively correlated is said to be persistent. The standard
approach to quantifying persistence is to carry out a Fourier
analysis. If the Fourier coefficients An have a power-law depen-
dence on the wavelengths �n

An � �n
�/2 [3]

a time series is said to be a self-affine fractal (8, 9). For a white
noise � � 0, if � � 2 the time series is a Brownian (random) walk,
and � � 1 defines an 1�f or red noise. For a time series to exhibit
self-organizing complexity it must satisfy Eq. 3, at least over
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some range of scales. A classic example is the famous 5�3 power
law given by Kolmogorov for fluid turbulence (10).

Slider Blocks
An array of slider blocks connected to each other by springs and
being pulled along a surface by puller springs attached to a
constant-velocity driver plate is a classic simple model of a
self-organizing complex system (11, 12). A single block pulled
along a surface by a spring will experience periodic slip events.
The spring is extended until the force in the spring equals the
maximum frictional force that prevents slip, slip then occurs, and
the force in the spring is reduced; the cycle then repeats. The
behavior is periodic and is fully predictable. But the behavior of
a pair of slider blocks pulled along a surface by springs and
connected to each other by a spring is much more complex. The
behavior of this system can exhibit low-order deterministic
chaos. This system is fully deterministic but future slip events
cannot be predicted. Chaotic behavior is associated with many
systems that exhibit self-organizing complexity.

The behavior of an array of a large number of slider blocks
self-organizes so that the frequency-area distribution of slip events
often satisfies the fractal relation 1. The area of a slip event is the
number of slider blocks that participates in the event. This type of
behavior has been referred to as self-organized criticality (13, 14).
The slider-block model is fully deterministic and clearly illustrates
the transition from a low-order system (two slider blocks) that
exhibits deterministic chaos to a high-order system (large numbers
of slider blocks) that exhibits self-organizing complexity.

Deterministic Chaos vs. Stochasticity
Some systems that exhibit self-organizing complexity are com-
pletely deterministic as described in the last section, but others
have a random or stochastic component. Self-affinity has been
demonstrated by analytical solutions of the Langevin equation.
The Langevin equation is the heat equation with a stochastic
(white or random noise) driver. Time series generated by
solutions to the Langevin equation can be self-affine fractals that
satisfy Eq. 3.

Colloquium Presentations
Biological Sciences. James Bassingthwaighte (Univ. of Washington,
Seattle) opened the colloquium with an assessment of biological
complexity by means of the Physome Project (15). Ary Goldberger
(Harvard Medical School, Boston) discussed fractal scaling in
health and its breakdown with aging and disease. Normal heartbeat
intervals are a fractional noise; deviations are associated with
pathologies such as heart failure (16–18). Joel E. Cohen [The
Rockefeller University and Columbia University (New York)]
considered the distribution of human population density (19). Hans
Frauenfelder discussed protein quakes (20), and John Hopfield
(Princeton University, Princeton) discussed the role of collective
dynamical variables in neurobiological computations (21, 22).

Physical Sciences. The classic problem in self-organizing complex-
ity is f luid turbulence. The governing equations (the Navier–
Stokes equations) can be specified. But even the largest com-
puters cannot obtain numerical solutions for turbulence.
Zellman Warhaft (Cornell University) discussed turbulence in
nature and the laboratory (23).

Weather and climate involve turbulence and other aspects of
fluid mechanics. Turbulence, weather, and climate clearly ex-
hibit deterministic chaos; thus, exact predictability cannot be
expected. Michael Ghil and A. Robertson (Univ. of California,
Los Angeles) discussed bifurcations and pattern formation in the
atmospheres and oceans (24). Lenny Smith (Oxford) discussed
predictability, uncertainty, and error in terms of forecasting
weather and climate (25–27).

There are many overriding themes in the physical sciences that

are associated with self-organizing complexity. David Campbell
(Boston University) discussed solitons, fronts, and vortices, and
emergent coherent structures. Sid Nagel (University of Chicago)
and coworkers discussed jamming, from granular materials to
glasses (28, 29). Jean Carlson (Univ. of California, Santa Bar-
bara) and John Doyle (Caltech) discussed complexity and ro-
bustness (30).

Catastrophes. Didier Sornette (Univ. of California, Los Angeles)
considered the predictability of catastrophic events, from fracture
to financial crashes to giving birth to a baby (clearly not cata-
strophic) (31). Charlie Sammis (Univ. of Southern California) and
D. Sornette (Univ. of California, Los Angeles) addressed the
question, ‘‘Why is earthquake prediction so difficult?’’ (32). Per Bak
and coworkers (Imperial College of Science, Technology, and
Medicine, London) presented a unified scaling law for earthquakes
(33). J.B.R. et al. considered self-organization in leaky threshold
systems with application to earthquakes, neurobiology, and com-
putation (34). D.L.T. et al. (35) illustrated self-organization (power-
law statistics) in both forest (wild) fires and landslides and discussed
associated models. Sarah Tebbens et al. (Univ. of South Florida,
St. Petersburg, FL) described the self-organization of the evolution
of shorelines (36). Jon Pelletier (Univ. of Arizona, Tucson) con-
sidered signatures of self-organization in climatology and geo-
morphology (37). Susan Kieffer (S. W. Kieffer Science Consulting,
Bolton, Ontario, Canada) presented signatures of complexity for
the Old Faithful geyser.

Finance. Gene Stanley et al. (Boston University) discussed the
quantification of economic systems by using methods of statis-
tical physics (38). Doyne Farmer (Santa Fe Institute, Santa Fe,
NM) discussed complexity in financial markets.

Networks. The World Wide Web has clearly evolved as a self-
organizing complex system. Walter Willinger et al. (AT & T
Laboratories) illustrated scaling phenomena on the Internet and
discussed possible explanations (39). Steve Strogatz (Cornell
University) presented a general discussion of complex networks,
and Mark Newman (Santa Fe Institute) gave examples of
self-organization in social networks (40). Kenneth Slocum (SEN-
CORP, Hyannis, MA) discussed human organizations as frac-
tally scaled structures.

Many engineering systems are certainly complex. But because
engineers impose a structure, they are generally not self-
organizing. Examples are automobiles and airplanes. Related
examples are highway systems and airline-route networks. But
there are also examples of engineered systems that become so
complex they become self-organizing by default. One example is
the electrical transmission system. When this system is pushed to
its capacity limit it can exhibit chaotic behavior and failure.
Another example is the World Wide Web.

Conclusions and the Future
This colloquium was organized so that it was diverse rather than
inclusive. A major objective was to encourage participants to
actively engage in a dialogue with colleagues in a wide range of
disciplines. This is clearly a field that is rapidly growing. The
growth is likely to be particularly strong in the biological and
social science applications. There seemed to be a consensus that
this colloquium was very successful and that future meetings
(colloquia) are desirable.

The organizers (and participants) thank the National Academy of
Sciences for the encouragement in planning the colloquium and for the
generous financial and administrative support. We also thank Mr. E.
Patte of the NAS executive office, Ms. M. Gray-Kadar of the Beckman
Center, and Ms. Stacey Shirk and Ms. Cathy Lopez from Cornell for their
help in organizing the meeting.
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